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Statistical mechanics of broadcast channels using low-density parity-check codes
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We investigate the use of Gallager’s low-density parity-ch@dkPC) codes in a degraded broadcast chan-
nel, one of the fundamental models in network information theory. Combining linear codes is a standard
technique in practical network communication schemes and is known to provide better performance than
simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that
the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is
superior to that of LDPC based time sharing codes while the best performance, when received transmissions
are optimally decoded, is bounded by the time sharing limit.
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I. INTRODUCTION improved practical code for a degraded broadcast channel by
linearly combining low-density parity-chedk DPC) codes,
Progress in digital communication technologies has drawhich have been shown to provide nearly optimal perfor-
matically increased the information flow in both wired and mance for single channel&-7]. For Reed-Solomon and
wireless channels. This makes the role of generic codin®CH codes, which are standard suboptimal codes, it has
techniques, such as error-correcting codes and data comprdseen reported that combining codes linearly results in supe-
sion, more important. As most existing codes are constructedor performance with respect to a time sharing transmission
for simple point-to-point communication, they do not neces{9,8]. This provides the motivation for the current study, in-
sarily provide optimal performance in multiterminal commu- vestigating the performance of linearly combined LDPC
nication such as the internet, mobile phones, and satelliteodes.
communication. Therefore, designing improved codes that Generally, one can define two different performance mea-
utilize characteristic properties of these media is a promisingyres for evaluating LDPC codes. The first is fivactical
direction for enhancing the performance of multiterminal yerformance achievable in feasible time scales that grow
communication. _ o polynomially with the systems size; while the other is the
The broadcast channel is a standard multiterminal comgsima| theoretically achievable performance, for which the
r_numcatlo_n channel _composed (.)f a single s_er_lder and muhaquired computation typicallly increases exponentially with
tiple receivers, and is characteristic of televisidrv) and respect to the message length. Utilizing the similarity be-

rad]o broadcas_tmg. This implies that. constructing a JOIntIytween LDPC codes and Ising spin systems, statistical physics
optimal code with respect to the multiple channels may pror rovides a scheme for evaluating both performance measures
vide improved performancg.e., higher capacifycompared P 9 P

to that of the time sharing scheme, whereby separate o tyyithin the same frar_neworlklp—la; the current standard
9 y Sep P thod used in the information theory commuriifyg] can

mally designed codes are used for each channel. It has be&if ; ) 4
shown, under the assumption degraded channelsthat only provide an estimate of the practical performance, and

jointly optimized codes can have a larger capacity regionpractically reduces to_the one used within the statistical_phys-

where error-free communication is possible, than that of timdCS framework. In this paper, we show that the statistical

sharing code§1—4]. However, this proof is nonconstructive Physics based analysis points to a superior practical perfor-

and the search for better practical codes for broadcast chafance of the suggested method with respect to LDPC based

nels is still an important topic in information theory. time sharing codegchieved by employing the belief propa-

The purpose of this paper is to devise and analyze agation algorithm; while its optimal performance is bounded

by the time sharing limit, which cannot be saturated by
known practical methods.

*Electronic address: knakamur@fe.dis.titech.ac.jp This paper is organized as follows. In the following sec-
TElectronic address: kaba@dis.titech.ac.jp tion, we introduce the general framework for broadcast chan-
*Electronic address: rmorelos@email.sjsu.edu nels. Unlike simple communication channels, the optimal
$Electronic address: d.saad@aston.ac.uk communication performance is still unknown for most
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FIG. 1. (a) A single sender and two receivers broadcast chaifbelThe capacity region in the case of binary symmetric channels. The
solid curve and the dotted line denote Cover’s and time sharing limits, respectjalyhen the corruption rate increases proportionally to
a distance from a broadcast stati@@ndey, the functional form of the conditional probabilif()].X) becomes identical on a circular arc
of a fixed radius centered at the station. This implies that the conditional probability for the second receiver can be expressed as
P(),|X) =Ey,P’(y2|y’)P(y’|X)=Zy1P’(y2|y1) P()1| &), where)’ is the received code word at the closest point to the second receiver
on the circle and®’(),|)’) models the corruption process between the second receiver and its closest point on the circle, which seems as
if the code word were conveyed to the second receiver in a relay scheme via the first receiver.

broadcast channels, which would make it difficult to evaluatechanne|p(yl,y2|;t) using an infinite code lengtN [3].

the performance of the proposed scheme. Therefore, we f@valuation of the capacity region is one of the fundamental
cus here on the degraded channel, for which the capacityroblems in multi-user information theory; the problem is

region has already been obtained. In Sec. lll, an LDPC codgifficult and has not yet been solved in general except for a
based construction for degraded channels is introduced, arféw special cases.

is subsequently analyzed in Sec. IV using methods of statis- A broadcast channd®();,)5|X) is termeddegradedif

tical physics. In Sec. V, the performance of the proposedhere exists a distributioR’ ()),|);) such that
scheme is evaluated by solving numerically equations that

emerge from the analysis. Section VI is devoted to a sum-
mary and conclusion. P(y2|2€)=g:} P’ (V2| V1) P(V1] ), (1)
1

Il. DEGRADED BROADCAST CHANNEL . . .
and is termed physically degrated if P(Y,|X)

In the general framework of broadcast channels, a single= P()),|);)P();|X). The stochastically and physically de-
sender(station broadcasts a code word composed of differ-graded channel models are commonly used in the literature
ent messages to multiple receivers. For simplicity, we her¢3] and merely indicate that the corruptigmocess can be
restrict our attention to the case of two receiveffgy. 1), viewedas a two stage process, where the more corrupted
where one code word’ (N bits), comprising of two mes- received codeword’, can be regarded as a further degrada-
sagesV;(R;N bits) andWW,(R,N bits), is sent to two receiv- tion of the less corrupted codewaddy. It does not imply that
ers. As each channel is noisy, receivers 1 and 2 obtain twany actual communication between the two receivers is re-
corrupted code word®; and)),, respectively; this is mod- quired. Furthermore, this assumption can also represent real-
eled by a conditional probabilit?());,),|X). The received istic scenarios; for instance, where the channel noise rate
corrupted code word¥,; and), are decoded by the respec- depends on the distance from the broadcaster, a natural as-
tive receivers to retrieve only the message addressed to eashmption for both wired and wireless communication. In this
of them. case, the channel model for the second recdi®p/),| )]

Analogously to the case of single channels, error-freecan beformally expressed as if the message were conveyed
communication becomes possible if the corresponding codeia the first receiver, who is closer to the broadcagke.
rate vector R;,R,) lies within a certain convex region, (1)]although the two receivers do not actually communicate.
termed thecapacity regiondetermined for a given broadcast A pictorial explanation is also provided in Fig(cl.
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The degraded channel is exceptional in the sense that iteethod has been developed for algebraic codes, such as
capacity region can be analytically obtained as the conveReed-Solomon and BCH, which are standard codes designed

hull of the closure of all pointsi;,R,) that satisfy for relatively short code lengths. For these codes, it is re-
Ry<I(U: ), ported that the minimum distance between code words is
larger than that achieved in the time sharing scheme, which

Ry<I(X 040 2 implies higher robustness against channel nfis8).

However, it is unclear whether a similar construction also
offers better performance when different code types are used.
Furthermore, it is theoretically interesting and important to

led C : ! i ¢ . the deri examine whether a linearly combined code can saturate Cov-
calle ¢ Cover§ Capac't.Vl] region. Unfortunate y,('; eﬁ erl\;_a-l er’s limit for infinite code length i) or not.
tion o OVers capamty IS noncoqstrucﬂve and otters |t'ge Motivated by these questions, we investigate here the
clue to the design of efficient practical codes. Thus, practlcaluly

for a certain joint distributionP (L) P(X|U) P (Y, V5| X);
where the auxiliary random variabld has a cardinality
bounded by|t]<min{|x],|)4|,|)%|}. This region is often

~“gbility and limitations of linearly combined LDPC codes in
codes for the degraded broadcast channel have been activefy, Ii):nit N — o0 y
investigated in the network information theory literat{ig. i

i . X An LDPC code is characterized by a parity-check matrix.
In the case of binary symmetric channels characterized b¥0 devise a linearly combined coding scheme for LDPC

flip probabilitiesp, andp,, condition(1) reduces to an in-  ;,qes we define a parity-check matrix in an upper triangular
equalityp,>p;. Then, the expression of Cover’s capacity is ¢y

simplified to
4

A A
Ry<1—Ha(5%po) Az( ' 2),

0 Aj

%0, ) —
Ru<Ha(6%pa) = Ha(py), ® where the sizes of the submatrices;, Ay, A; are
where a parameter<05<1 specifies the optimal ratio be- [(1—a@)N—R;N]X(1-a)N, [(1—a)N—R;N]XaN, and
tweenR; andR,; &*p=48(1—p)+(1—8)p andHy(p) is [@N—RyN]XaN, respectively. Furthermore, we assume
Shannon’s entrop¥i ,(p) = — p log,p—(1—p)log,(1—p). thatA;,A,,A; haveK,,K,,K; andC;,C,,C; nonzero ele-
The solid convex curve in Fig.() shows Cover’s limit, ments per row and column, respectively. Based on the parity-
i.e., the boundary of Cover’s capacity for the binary symmetcheck matrix, the generator mati&' is constructed as
ric channels. The straight dotted line corresponds to the time T T
sharing capacity, i.e., the achievable capacity by concatenat- T G; G
ing two independent codes words optimized for each channel o Gg '
separately. This is realized by usiNg1— «) andN« bits of

the code wordY for encoding messages; and)V,, respec-  whereG/ (i=1,3) are constructed systematically to satisfy
tively. Here, 0<a<1 is the code length ratio between the o constraintsAiGiTzo (modulo 2 and G; is defined as
two messages. This simple concatenation and the Iimit_AT[A AT]"1[A,Gl]. The sizes of these matrices are (1
achievable by this scheme are often termedtifne sharing a’)lN;RlN (12—2)N>< RN, and aNXR,N, respec-
and thetime sharing limif respectively. The difference be- tively e 2 2

tween Cover’s and the time sharing limits indicates the ca- Th.e sender produces a code wokdby taking a product
pacity gain obtained by optimizing a code for the complete

broadcasting system optimizing each of the channels se of the generator matrbG' and the original messages
rately 9 sy P g p?'Wl W) T. Receiving a possibly corrupted code word, each

We have to emphasize that achieving the time sharindccEVer evaluates the syndrome vectdrs A)i(i=1,2),

limit in practiceis never trivial as there is no known practi- Which yield the parity-check equatiodj=Ag . The noise

cal coding scheme that saturates Shannon'’s limit even for éectorg can be thought of as having two separate segments

single channel. Therefore, the design of improved practica enoted by (up) andd (qlown) '.?ter on. The parameter )
codes for broadcasting, by combining existing codes, devise ntrols the error-correction ability for the second message;

for single channels, is an important research topic in codinél_ N transm_ltted information redunda_ncy Increases with
he decoding problem for each receiver is to find the most

(5

theory4]. probable noise vectorss, and o, such that the parity-check
equation
lll. LINEARLY COMBINED CODES
A linearly combined code is a well-known strategy for _ A1 Az S (i=1,2 ©6)
designing high performance communication schemes for ! 0 A;llo '

broadcast channels using multiple linear error-correcting

codes[9,8]. In this scheme, the firdt(1— «) bits of a code is obeyed, and using prior knowledge about the two noise
word are obtained by linearly mixing two messag#s and  vectors characterized by the two different channels.

W, while the othemN« bits are generated only from), by The second receiver has to estimate only the lower part of
some linear transformation. In both coding and decoding, althe noise vectog, which can be carried out using only the
operations are typically carried out in modulo 2. Thislower part of Eq.(6). However, we assume here that both
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receivers independently solve H@) using prior knowledge otherwise. The tensob¥y, similarly corresponds ta\s.

on their own channgls SINce one can show that solving ththe first and second terms in the Hamiltoni{@ correspond
whole equation provides optimal estimation perform_ance fogg Eq. (6), while the third and fourth terms are provided by
both receivers. As E¢6) has the same form for receivers 1 ihe prior distribution of the noise. The fieRirepresents the

and 2, we hereafter omit the subscript1,2. . channel noise level; it is set tdIn(1—p,)/p; and 3In(1
It should be emphasized here that the upper triangularp,)/p, for the first and the second receivers, respectively.
architecture in the parity-check matriis suitable for pro- In order to simplify the calculation, we first employ the

viding a higher-error correction ability to the second messaggauge transformations;—s; fi”,crj—wfj g?, JY 1, and

W, which is more degraded according to H@) than the 39 _,1 which reduces complicated couplings expressed in

other messageVy; consequentiallyg® can be estimated in-  the first and second terms in Hamiltonié8) to simple fer-

dependent of", while estimation of£" fails unless&? is romagnetic interactions.

correctly retrieved. As the parity-check matrices and noise vectors are gener-
For bitwise minimization of the error probability, the op- ated randomly, we have to perform averages over these vari-

timal estimation is given by maximizing the posterior mar- ables for extracting typical properties of the code. This can

ginal (MPM) be carried out by the replica method—pBF
= 1/N< In Z)A,g“,gd: ”mn_,o(l/n N)In<Zn_ 1>A,§U,§dv where
giuz argma)éie{ou}P(SiU)y gjd: argma)&je{O/l}P(UHJ)- Z is the partition function ang- - - ) cu cd represents an av-

@ erage over the parity-check matéxand the noise vecto&"
and &9 (i.e., the quenched variabled his gives rise to three

An exact evaluation of Eq7) is generally hard; therefore, S€ts of order parameters

the belief propagatiofBP) approximation scheme is widely q (-oN

used as a practical decoding algorithm. The latter has been Uay.ay, ... = N E Xisial N .Siam,
shown to be identical to the Thouless-Anderson-Palmer i=1

(TAP) approach in the current cagg4-19. 1 an

r{al,a2 ..... a }:_2 YjO'Tl...O'?m,
IV. STATISTICAL MECHANICS m N =1

A. Macroscopic analysis—performance evaluation 1 oN
. . . t Z—Z Zo, gom, 9
In order to evaluate the typical error-correction ability of {8183z, am = N & T ]
these codes in the limil—co, we investigate the behavior o )
of the MPM decoder using the established methods of statisvhere a;,a;, ... an denote the replica indices running

tical mechanics. We first map the current system to an Isingflom 1 to n, and their conjugatesa{al,az ..... an)
spin model with finite connectivity by employing the binary F{al,az _____ at+ Yaga,. ... a - The variablesz; are intro-

representatiof + 1,—1,X} for the alphabet and operator in- duced to express the constraint of the parity-check matgix
stead of the Boolean o{®,1,+}. This implies that the pos- ¢ P party $

terior probabilityP(s, a]J) can be expressed as a Boltzmann

distribution at the inverse temperatyge=1 using a Hamil- s 2 D3 _c
tonian e (. JK)Nj) 3
H(s,a]d)= lim [ y Z D%(I2< ).90K) — § %ZZ{J(Kg)\j}ijmsmmcm) (10)
yoo | AZ(KY), KR} a2 27 i :
u The variablesX; andY; are similarly introduced foA; and
X8| =Inky),qK,) 5 II_IK si Ll o As.
tellky)  Jedky) In order to proceed further, one has to make an assump-
tion about the symmetry of replica indices. Here we employ
+y > D‘}(K3) 5( —JdﬂKg) ; H O'J)] the simplest replica symmetriRS) ansatz, expressed in the
{I(K3)} j e J(K3) current case byd ... a3 =dofAXT(X)X™, Ta . a
(1N o =rofdyp(V)Y™, ta,, ... ay=tofdzé(2)2", whereqy, ro,
—-F Zl Si—FJZl gj, 8 andt, are the normalization constants to makéx), p(y),

and ¢(z) proper probability distributions over the interval
[—1,1], respectively. Unspecified integrals are performed
over[ —1,1]. We also assume a similar ansatz for the conju-
gate variables. A further complicated assumption about the
S e . 7 / order parameter symmetry is generally required in most dis-
=(i1:j2, -+ - jk) is the K subscripts combllr;atlon from  ordered system§20,21. However, the validity of the RS
=12,... aN chosen similarly. The tens®zk , 7k, P&~ ansatz in the current system is strongly supported by a recent
comes 1 when its subscripts agree with the positions of norreport on the absence of the replica symmetry breakimg
zero elements in the parity-check matridesandA,, and 0  the dominant stajein gauged systems where Nishimori's

whereZ(K)=(iq,i,, ... k) denotes the combination of the
K subscripts chosen from the=1,2, . .. ,(1- a)N possibili-
ties without duplication(the order is ignored and J(K)
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temperature is usg@2]. The latter corresponds to using the A o Kgt
correct priors in decodinfR3], as performed in the current d(z)= 5( z— H z|> . (12
analysis. = PKa—1

Under these assumptions, one obtains the free energy R
The overlaps M =1/(1-a)NZ;s;& and My

F=(1-R;—Ry)In2—(1—a—Ry) =(1/aN)= 0 serve as performance measures for the
K, Ky error-correcting ability. After solving the saddle-point equa-
><< n| 1+TT % T1 )h/) > —(a—Ry) tions (12), these can be calculated as
=1 7K1, pK2
. M= [ anttymsartny, M= [ antdmsort,
><<In 1+]1 z,)> +(1—a)Cy(In(1+xX)) 1 5 (13
I=1
K3

. A where distributions of effective fields.4(h) are evaluated as
+aCy(In(1+yy)), ,+ aCs(In(1+22)) 4 5+ (1— )

Cy
-~ A hY (h)=<5(h—tan?‘{2 tanh X, + &F >
><<In TreestF[ ] (1+5s%) > e =1 £3C
I=1 §,;Tc1 .
Cy 4o B 2 -
+a< in| Tr, 67T (1+ o9 heﬁ(h)—< 5( h tam‘{lzl tanh™ty,
=1

Cs
Cs =15
<Ti (1+UEI’)]> | an +|§l tanh 12, + éF > e (14)
- £7C2.4% e
where (---)pk denotes an integral of the form B. Microscopic analysis—practical decoding
fHEZldka(xk)(« ) and (f(€))e=(1—p)f(+1) As already mentioned, it is computationally hard to per-
+pf(—1). form MPM decoding(7) exactly. Instead, the BP algorithm
Varying Eg.(11), one obtains a set of saddle-point equa-[14] is widely used for a practical decoding in LDPC codes.
tions, Belief propagation has recently been shown to be equivalent
to the Bethe methofil5,16, in general, and to provide an

spin glass modelgl8,19. Since the current system is some-
what similar to spin glass models, we use a term BP-TAP for
referring to this scheme from now on.

Co-1 The BP-TAP approach offers an iterative algorithm to ap-
p(y)=< 5( y—tanf{

€1 A equivalent result of the TAP approagt7], in particular, for
m(x)={ 8| x—tanh X, tanh 1+ &'F ,
=1 §,;TC1_1

> tanhly, proximately evaluate marginal posterior distributions based
=1 on local dependencies between syndrome and variables.

Cs )> These local dependencies can be uniquely identified with
§,;)Cz’1,;5C3

+ > tanh 1z, + &9F
I"=1

conditional probabilities. In the current system, these become
qp,=P(m=n|{J/3,}) andq},<P(J,[n=n{3/J,}), where
n; andJ, represent components of spin variabéesr, and

C, syndromeJ, respectively;{J/J,} denotes the set of syn-
d(2)= < 5( z—tam‘{

E tanh 1y, drome bits excludingeth component. As most syndrome and
=1 spin variables are not directly related, we assign the condi-
tional probabilities only to pairgl that have nonzero ele-

C3-1 ) > ments in the parity-check matri.
§‘5021$C371

+ > tanh 1z, + &9F

= Evaluating the two types of conditional probabilities us-

ing directly connected components, the BP-TAP algorithm
can be generally expressed as

Ki—1 Ky
7T(X):<5(X— Iljl X|H Y|/)> ) q”|=a Ian H agl, (15)
=1 K11 oKy BT e M)
LV o = ol J,:n n; ),
p(y)_< 5( y_|:1 X ) YI’) > ' u a’ul{”j eg(u)\l} ( . i‘fgf-)\J J)iegi)\l qm
I"=1 Ky, pKo1 (16)
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whereM(l) and£(x) denote the sets of syndrome and spinwhich provides the MPM estimators =sgn((s;)) and o;
variable indices that are directly linked to spin and syndrome= sgn(a;)).

indices| and u, respectively;M(1)\ . represents the set of |t can’be shown that the BP-TAP framework provides an
indicesv e M(l) excludingu and similarly forC(u)\I and  exact result when the global structure of the connectivities is
other sets. Normalization constants,; and Exm , are intro-  graphically expressed by a trE®4]. Unfortunately, it is still

duced to makey, and El?u probability distributions of the unclear how good are the approximations obtained when a

spin variablen. A field F is introduced to represent the prior 9iven system does not admit a tree architecture.
probability. The graphical architecture of LDPC codes generally has

Since spin variablen takes only two valuest1, it is many loops, which implies that the BP-TAP framework does
convenient to express the BP-TAP algorithm using spin ayl'0t necessarily offer a good approximation. However, it is

n ~n ... conjectured, and partially confirmed, that a nearly exact re-
eragesin_ 1N, and2n_.1nqy rather than the distribu sult can be obtained, as long as no other locally stable solu-

tionsq, andqy, themselves. As the parity-check matA%s  jon exists, when the parity-check matis randomly con-

structured, it may be useful to assign a different notation tastrcted and in the limiN—o: this is due to the fact that the

the spin averages according to the submatrix, to which thg pical loop length scales a®(InN) for randomly con-

pair of indicesul belongs to. We use,,,y,, andz, 0 structed matrices, which implies that LDPC codes can be

denoteX,_.;ndy, when the pair of indiceg:l belongs to |ocally treated as trees ignoring the effect of logpd].

A1, A,, andA;, respectively. Similar notatiorf% ,9;“ , and Neglecting the effect of loops naturally leads to a macro-

im are used fOQHZﬂnazl_ Then, the BP-TAP algorithms Scopic description of the BP-TAP algorith:(ﬂ?) Autilizing

(15) and (16), which are expressed as a set of functionaldensity functions of messages, , Y, Zu, Xu s Yu, and

equations, are reduced to a couple of nonlinear equations z ,, which becomes identical to the simple iteration of the
saddle-point equatiofil2) [24]. Surprisingly, the celebrated
method known as thdensity evolutionDE) [13], recently
discovered independently in the information theory commu-
nity, reduces exactly to the same equat{@g). As both the
DE and the current analysis reduce to an identical equation

, (12), the estimates provided by the two frameworks gener-
ally coincide for the practical performance. However, as the
concept of free energy is missing from the DE framework, it
does not provide a way for evaluating the optirfthleoreti-

, cal) performance, for a given code; this is naturally charac-
terized, in the statistical physics framework by thermody-
namical transitions between decoding success and failure

X1 = tan}‘{ > tanh x,+F

ve A1)/ u

ya=tanh X  tanhly,+ X tanhlz,+F
ve AS) ve AS)

z,=tanhj > tanhly,+ > tanh 'z, +F
ve A% ve ALY/

X;lesgr(‘],u) H X,u,i H y,u] ’ phases.
AT jeAg V. RESULTS
y \=sgnJ,) H X Vo In order to theor.etically examin_e the typical performance
m m e ATV ) ‘“jEAmw(ﬂ)” M that can be obtained by the linearly combined coding
! 2 scheme, we solved the saddle-point equatiti®. Since
solving the equations analytically is generally difficult, we
EM,:sgr(JM) 11 Z,i, (17)  mainly resorted to numerical methods. The solutions were
je A obtained by iterating the saddle-point equatiqdg), and

approximating the distributions b@(10%) sample vectors.
where A™"(u) and A®(1) denote sets of nonzero elements Less than 50 iterations were typically sufficient for obtaining
in the uth row andith column of matrixA, respectively. a solution.

Equations(17) can be solved iteratively from appropriate  Solving the equations for several parameter sets, assum-
initial conditions (prior means are usually chosen as initial ing a>R,/(R;+R,), we found that the solutions can be
state$. Less than 50 iterations are typically sufficient for classified into three categories depending on whether over-
convergence. After obtaining the solutions, approximatedapsM , andMg are 1 or not. The first one is referred to the
posterior means can be calculated ferromagnetiqFM) solution (M ,=M4=1) corresponding to
a perfect retrieval for both messagdg and),. The half-
ferromagnetic (HFM) solution which is characterized by
M,# 1 andM4=1 implies that only the second messagg
is perfectly retrieved, whiléV, is not. The last category,

(s) =tan{ > tanh X, +F

veASki)

A . termed paramagnetiPM) solution, describes a decoding
(oj)=tan 2 tanhflyyj+ 2 tanhflzyj+F , failure for both messages being characterizedy 1,M 4
ve A() ve AP #1. The ferromagnetic solution always exists and is locally

(18) stable forC,=3 andC3;=3, while one can find other solu-
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FIG. 2. Areas corresponding to FM, HFM, and PM for a wire- 0

less degraded channel assuming that the noise corruption rate grows 0 0.02 004 008 0.08 0.1 0.12
proportionally to the distance from a broadcast state@ndey. For P
a>Ry /(R +Ry) (left) , the area wheréV, can be perfectly re- !
trieved becomes broader than ferx R, /(R; +R;) (right) because FIG. 3. Optimal and practical performance of the MPM decoder
of the existence of the HFM solution. calculated by methods of statistical mechanics for differeral-

ues. For the first channel, the optimal performance is given by the
tions only for relatively higher noise levels. As the noisethermody_n_amical transition between FM an_d HFM solutions, w_hile
level increases, HFM and PM solutions emerge in this ordefhe transition between HFM and PM solutions marks the optimal
The HFM solution may look counterintuitive at first be- performance for .the.second chanr)el. On the other hand, the practi-
cause the corruption process for e second recelver is 8y FE e BT Y TG Bl o e e
\?vr:rsds?/\(/jazsrsgig dwtrgctggl\g;icfzg I:gs;?\/ssrlo\z;ht?ltetrf]ierstt:og:eCarlo solutions based on 4Gample vectors were employed for

. . Solving the saddle-point equatidh?). The standard deviation val-
Retrieval of YV, would therefore fail unlessV, has been ues resulting from ten trials are smaller than the symbol size. The

correctly dec_oded. However, one.should keep in ml_nd thaBlack squares and the black circles denote the optimal and the prac-
the two receivers carry out two different tasks; the first re<jca| performances for the linearly combined coding scheme, where
ceiver has to retrieve more information from the sllghtly COr-code parameters are set@=C;=3,C,=4, R;=R,=1/4. Dia-
rupted code word, while the second receiver retrieves I€Sgond symbols denote the maximum noise levels for decoding suc-
information from a more degraded message. A failure of theess by the BP-TAP algorithm, determined from 50 experiments.
first receiver in decodindgpoth components of the message, The error bars are smaller than the symbol size. Broken lines denote
& and&, does not provide any information on its abiliigr ~ the optimal and practical performances of the time sharing for cor-
the ability of receiver 2to successfully decode part of the responding LDPC codes. The two lines in the upper right are Cov-
message’. In addition, the current code based on an uppeer’s and time sharing capacities calculated in the information theory
triangular parity-check matrix is designed to provide aliterature.
higher-error-correction ability fodV, as it has to be trans-
mitted to a farther distance and relatively more resource is Figure 3 shows the maximum noise levels for perfect de-
assigned for, in construction of a code word’ for «  coding of the linearly combined coding method obtained for
>R,/(R;+R,), makes it possible to produce the nontrivial C2=4 and 0 fixingC,;=C3=3; C,=0 corresponds to the
solution HFM. Fora<R,/(R;+R;), on the other hand, we time sharing scheme, for which,=0. One can find that
found only two solutions: FM and PM. A pictorial explana- both optimal and practical performances of the MPM de-
tion is provided in Fig. 2. The solution that has the lowestcoder are improved by the introduction of the additional sub-
free energy among the three becomes thermodynamicalljpatrix A,, as anticipated, in spite of the fact that the param-
dominant. As the noise levplbecomes highefor the fieldF  eterC,(=4) is not optimally tuned. This result may induce
becomes weakgrthe dominant state changes from FM to the hope that Cover’s limit can be saturated by optimally
HFM and PM in this order. Since receivers are required tguning the submatrices. However, our analysis contradicts
retrieve only their own messages, the transition point bethis conjecture. Solving Eq12) in the limit C3—c andC,
tween HFM and PM corresponds to the maximum noiseor C,— is feasible; it is known that the MPM decoder
level for error-free communication in the second channelprovides the optimal performance in this limit, while practi-
while maximum noise level for the first channel is given by cal BP-TAP decoding becomes difficult. The three solutions
the transition point between FM and HFM. correspond to those already mentioned before, but can be
However, this does not imply a successful decoding up t@nalytically expressed as the following.
the critical points inpractical time scales. Practical perfect (1) FM solution: Both messages are decodabli! (
decoding by the BP-TAP algorithm is possible only when no=My=1). The corresponding solutions and free energy are

suboptimal solutions exist, which means that the practically 7(X)=8(x—1), 7(X)=8(x—1)

achievable limit is given by thepinodal pointsof the HFM o T

and PM solutions for the first and the second channels, re- p(y)=06(y—1), p(y)=6y—1),

spectively; i.e., the point where new suboptimal solutions e VP (19
emerge. A similar phenomenon has been reported before for $(2)=6z=1), $(2)=48(z-1),

similar system$10,11]. F=—(1-2p)F.
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(2) HFM solution: MessagelV, is only decodable N1, In the case of binary symmetric channels, the optimal

F1My4=1). cloud centei/ can be obtained by sampling bit unbiased
. . vectors, for which the entropy per bit can be maximized to 1.

m(X)=(d(x—tanh§F)),, m(x)=45(x), On the other hand, one can produce the optimal casdty
o R independently and randomly generating each bit using a uni-

p(y)=6(y—=1), p(y)=4é(y), form bias 0<8<1, which provides an entrophi,(8) per

(200 hit.

d(2)=8(z—1), &(2)=8(z—1), In an ideal situation, a noise vectgy that is biased with

a flip probability p; is added to the coset; in the first
F=(1-a—RyIN2—(1-2p)F—(1—a)In2H,(p). channel. This implies that the entropy of the received coset

becomesH,(6*p,) per bit, while the entropy of the noise
vector isH,(p;) per bit. Since one can use the difference
between the entropies to convey the information/gf, the
capacity of the first channel becoméeR;<H,(5*p;)
—H,(p1), which is the second inequality of E(). On the
other hand, for the second channel, characterized by a flip

(3) PM solution: Both messages are not decodahié,(
#1Mg#1).

7(x)=(S(x—tanhéF)),, m(x)=8(X),

p(y)=(8(y—tanh¢F))s, p(y)=48(y), ratep,, the cosetY, together with a channel noigg serves
(21 as a single noise vector, for which the entropy becomes
$(2)=(8(z—tanhéF)),, d(2)=58(2), H, (6% p,) per bit. As the entropy of the received cloud cen-
ter can be maximized to 1 per bit, this means that the capac-
F=(1—Ry—Ry)In2—(1—2p)F—In 2H(p). ity of the second channel is given By, <1—H,(5*p,),

which is the first inequality of Eq(2).

Examining the critical condition for decoding success in
each channel, and comparing the free energy of the solutions,
one obtains the capacity region of the linearly combined cod-c}

.
In linearly combined coding schem§$0W2+(OGl)W1,
3

ing scheme (Gi)WZ becomes almost random, which may sgve as the
optimal cloud center. However, the second paft) Vs,
Ro<e[1—H(p2)], which corresponds to the coset, is somewhat structured, dif-
fering from the optimal choice of uniformly biased random
Ri<(1—a)[1—H(py)]- (22)  vectors.

o . . ) ) In order to compare the structured coset with the optimal
This is, unfortunately, identical to the time sharing capac-

T
ity that can be achieved by a simple concatenation of tw®"€: let us fix the maximum entropy per bit O?)lqwl’
independent codes. This result implies that the advantage @fhich equals *«, to that of the optimal coseti,(5).
the linearly combined coding scheme vanishes as the submahen, one can show that the entropy of the corrupted coset
trices become dense and this method cannot saturate Covewdth flip probability p per bit always increases from
limit. H, (5% p) to (1—a)+ aH,(p)=H,(8) + Ha(p)
=H,(6*p). This means that the critical rate of the first
VI. SUMMARY AND CONCLUSION channel increases froml,(5*p;)—Hy(p1) to (1—a)[1

. . . —H , while that of th d ch | red f
In this paper, we have examined the performance of lin- 2(P1)], while that of the second channel reduces from

early combined LDPC codes for information transmission in® ~ Ha(P2) t0 al 1= Hy(p;)]. This trade-off between the ca-

a broadcast channel. Our analysis shows that the capacity BPC'“GS of _the two _channels limits the_performgnce_ O.f lin-
the suggested coding scheme is upper bound by the tim%arly combined coding scheme to the time sharing limit that
s always within Cover’s capacity region.

sharing capacity, in spite of the apparent improvement i . . . .
both optimal and practical performance with respect to N conclusion, while the suggested linearly combined

LDPC based time sharing codes characterized by finite cor=PPC coding scheme provides an improved performance

nectivity values. over LDPC based time sharing codes for finite connectivity
The reason for the failure of linearly combined LDPC constructions, in both theoretical and practical limits, it can-

codes to saturate Cover’s limit may be explained by the cod80t go beyond the theoretical time sharing limit; for that to

word structure produced by this scheme. In his proof, Covehappen, different coding schemes should be examined.

optimized the code performance by introducing a specific

structure termed theloud coding employing an auxiliary

random variabld/ as in Eq.(2). In cloud coding, a code ACKNOWLEDGMENTS

word X is randomly generated accordingRg]Z{) around a
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