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Statistical mechanics of broadcast channels using low-density parity-check codes
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We investigate the use of Gallager’s low-density parity-check~LDPC! codes in a degraded broadcast chan-
nel, one of the fundamental models in network information theory. Combining linear codes is a standard
technique in practical network communication schemes and is known to provide better performance than
simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that
the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is
superior to that of LDPC based time sharing codes while the best performance, when received transmissions
are optimally decoded, is bounded by the time sharing limit.
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I. INTRODUCTION

Progress in digital communication technologies has d
matically increased the information flow in both wired a
wireless channels. This makes the role of generic cod
techniques, such as error-correcting codes and data com
sion, more important. As most existing codes are constru
for simple point-to-point communication, they do not nece
sarily provide optimal performance in multiterminal comm
nication such as the internet, mobile phones, and sate
communication. Therefore, designing improved codes
utilize characteristic properties of these media is a promis
direction for enhancing the performance of multitermin
communication.

The broadcast channel is a standard multiterminal co
munication channel composed of a single sender and m
tiple receivers, and is characteristic of television~TV! and
radio broadcasting. This implies that constructing a join
optimal code with respect to the multiple channels may p
vide improved performance~i.e., higher capacity! compared
to that of the time sharing scheme, whereby separate o
mally designed codes are used for each channel. It has
shown, under the assumption ofdegraded channels, that
jointly optimized codes can have a larger capacity regi
where error-free communication is possible, than that of ti
sharing codes@1–4#. However, this proof is nonconstructiv
and the search for better practical codes for broadcast c
nels is still an important topic in information theory.

The purpose of this paper is to devise and analyze
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improved practical code for a degraded broadcast channe
linearly combining low-density parity-check~LDPC! codes,
which have been shown to provide nearly optimal perf
mance for single channels@5–7#. For Reed-Solomon and
BCH codes, which are standard suboptimal codes, it
been reported that combining codes linearly results in su
rior performance with respect to a time sharing transmiss
@9,8#. This provides the motivation for the current study, i
vestigating the performance of linearly combined LDP
codes.

Generally, one can define two different performance m
sures for evaluating LDPC codes. The first is thepractical
performance achievable in feasible time scales that g
polynomially with the systems size; while the other is t
optimal theoretically achievable performance, for which t
required computation typicallly increases exponentially w
respect to the message length. Utilizing the similarity b
tween LDPC codes and Ising spin systems, statistical phy
provides a scheme for evaluating both performance meas
within the same framework@10–12#; the current standard
method used in the information theory community@13# can
only provide an estimate of the practical performance, a
practically reduces to the one used within the statistical ph
ics framework. In this paper, we show that the statisti
physics based analysis points to a superior practical per
mance of the suggested method with respect to LDPC ba
time sharing codes~achieved by employing the belief propa
gation algorithm!; while its optimal performance is bounde
by the time sharing limit, which cannot be saturated
known practical methods.

This paper is organized as follows. In the following se
tion, we introduce the general framework for broadcast ch
nels. Unlike simple communication channels, the optim
communication performance is still unknown for mo
©2003 The American Physical Society03-1
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FIG. 1. ~a! A single sender and two receivers broadcast channel.~b! The capacity region in the case of binary symmetric channels.
solid curve and the dotted line denote Cover’s and time sharing limits, respectively.~c! When the corruption rate increases proportionally
a distance from a broadcast station~sender!, the functional form of the conditional probabilityP(YuX) becomes identical on a circular ar
of a fixed radius centered at the station. This implies that the conditional probability for the second receiver can be expr
P(Y2uX)5(Y8P8(Y2uY8)P(Y8uX)5(Y1

P8(Y2uY1)P(Y1uX), whereY8 is the received code word at the closest point to the second rec
on the circle andP8(Y2uY8) models the corruption process between the second receiver and its closest point on the circle, which s
if the code word were conveyed to the second receiver in a relay scheme via the first receiver.
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broadcast channels, which would make it difficult to evalu
the performance of the proposed scheme. Therefore, we
cus here on the degraded channel, for which the capa
region has already been obtained. In Sec. III, an LDPC c
based construction for degraded channels is introduced,
is subsequently analyzed in Sec. IV using methods of sta
tical physics. In Sec. V, the performance of the propos
scheme is evaluated by solving numerically equations
emerge from the analysis. Section VI is devoted to a su
mary and conclusion.

II. DEGRADED BROADCAST CHANNEL

In the general framework of broadcast channels, a sin
sender~station! broadcasts a code word composed of diff
ent messages to multiple receivers. For simplicity, we h
restrict our attention to the case of two receivers~Fig. 1!,
where one code wordX (N bits!, comprising of two mes-
sagesW1(R1N bits! andW2(R2N bits!, is sent to two receiv-
ers. As each channel is noisy, receivers 1 and 2 obtain
corrupted code wordsY1 andY2, respectively; this is mod-
eled by a conditional probabilityP(Y1 ,Y2uX). The received
corrupted code wordsY1 andY2 are decoded by the respe
tive receivers to retrieve only the message addressed to
of them.

Analogously to the case of single channels, error-f
communication becomes possible if the corresponding c
rate vector (R1 ,R2) lies within a certain convex region
termed thecapacity region, determined for a given broadca
03670
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channelP(Y1 ,Y2uX) using an infinite code lengthN @3#.
Evaluation of the capacity region is one of the fundamen
problems in multi-user information theory; the problem
difficult and has not yet been solved in general except fo
few special cases.

A broadcast channelP(Y1 ,Y2uX) is termeddegradedif
there exists a distributionP8(Y2uY1) such that

P~Y2uX!5(
$Y1%

P8~Y2uY1!P~Y1uX!, ~1!

and is termed physically degrated if P(Y2uX)
5P(Y2uY1)P(Y1uX). The stochastically and physically de
graded channel models are commonly used in the litera
@3# and merely indicate that the corruptionprocess can be
viewedas a two stage process, where the more corrup
received codewordY2 can be regarded as a further degrad
tion of the less corrupted codewordY1. It does not imply that
any actual communication between the two receivers is
quired. Furthermore, this assumption can also represent
istic scenarios; for instance, where the channel noise
depends on the distance from the broadcaster, a natura
sumption for both wired and wireless communication. In th
case, the channel model for the second receiver@P(Y2uX)#
can beformally expressed as if the message were conve
via the first receiver, who is closer to the broadcaster@Eq.
~1!# although the two receivers do not actually communica
A pictorial explanation is also provided in Fig. 1~c!.
3-2
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The degraded channel is exceptional in the sense tha
capacity region can be analytically obtained as the con
hull of the closure of all points (R1 ,R2) that satisfy

R2,I ~U;Y2!,

R1,I ~X;Y1uU! ~2!

for a certain joint distributionP(U)P(XuU)P(Y1 ,Y2uX);
where the auxiliary random variableU has a cardinality
bounded byuUu<min$uXu,uY1u,uY2u%. This region is often
called Cover’s capacity@1# region. Unfortunately, the deriva
tion of Cover’s capacity is nonconstructive and offers lit
clue to the design of efficient practical codes. Thus, pract
codes for the degraded broadcast channel have been ac
investigated in the network information theory literature@4#.

In the case of binary symmetric channels characterized
flip probabilitiesp1 and p2, condition ~1! reduces to an in-
equalityp2.p1. Then, the expression of Cover’s capacity
simplified to

R2,12H2~d* p2!

R1,H2~d* p1!2H2~p1!, ~3!

where a parameter 0,d,1 specifies the optimal ratio be
tweenR1 and R2 ; d* p5d(12p)1(12d)p and H2(p) is
Shannon’s entropyH2(p)52p log2p2(12p)log2(12p).

The solid convex curve in Fig. 1~b! shows Cover’s limit,
i.e., the boundary of Cover’s capacity for the binary symm
ric channels. The straight dotted line corresponds to the t
sharing capacity, i.e., the achievable capacity by concate
ing two independent codes words optimized for each chan
separately. This is realized by usingN(12a) andNa bits of
the code wordX for encoding messagesW1 andW2, respec-
tively. Here, 0,a,1 is the code length ratio between th
two messages. This simple concatenation and the l
achievable by this scheme are often termed thetime sharing
and thetime sharing limit, respectively. The difference be
tween Cover’s and the time sharing limits indicates the
pacity gain obtained by optimizing a code for the compl
broadcasting system optimizing each of the channels s
rately.

We have to emphasize that achieving the time sha
limit in practice is never trivial as there is no known pract
cal coding scheme that saturates Shannon’s limit even f
single channel. Therefore, the design of improved pract
codes for broadcasting, by combining existing codes, dev
for single channels, is an important research topic in cod
theory @4#.

III. LINEARLY COMBINED CODES

A linearly combined code is a well-known strategy f
designing high performance communication schemes
broadcast channels using multiple linear error-correct
codes@9,8#. In this scheme, the firstN(12a) bits of a code
word are obtained by linearly mixing two messagesW1 and
W2 while the otherNa bits are generated only fromW2 by
some linear transformation. In both coding and decoding,
operations are typically carried out in modulo 2. Th
03670
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method has been developed for algebraic codes, suc
Reed-Solomon and BCH, which are standard codes desig
for relatively short code lengths. For these codes, it is
ported that the minimum distance between code words
larger than that achieved in the time sharing scheme, wh
implies higher robustness against channel noise@9,8#.

However, it is unclear whether a similar construction a
offers better performance when different code types are u
Furthermore, it is theoretically interesting and important
examine whether a linearly combined code can saturate C
er’s limit for infinite code length (N) or not.

Motivated by these questions, we investigate here
ability and limitations of linearly combined LDPC codes
the limit N→`.

An LDPC code is characterized by a parity-check matr
To devise a linearly combined coding scheme for LDP
codes, we define a parity-check matrix in an upper triangu
form

A5S A1 A2

0 A3
D , ~4!

where the sizes of the submatricesA1 , A2 , A3 are
@(12a)N2R1N#3(12a)N, @(12a)N2R1N#3aN, and
@aN2R2N#3aN, respectively. Furthermore, we assum
that A1 ,A2 ,A3 haveK1 ,K2 ,K3 andC1 ,C2 ,C3 nonzero ele-
ments per row and column, respectively. Based on the pa
check matrix, the generator matrixGT is constructed as

GT5S G1
T G2

T

0 G3
TD , ~5!

whereGi
T ( i 51,3) are constructed systematically to satis

the constraintsAiGi
T50 ~modulo 2! and G2

T is defined as
2A1

T@A1A1
T#21@A2G3

T#. The sizes of these matrices are (
2a)N3R1N, (12a)N3R2N, and aN3R2N, respec-
tively.

The sender produces a code wordX by taking a product
of the generator matrixGT and the original message
(W1 ,W2)T. Receiving a possibly corrupted code word, ea
receiver evaluates the syndrome vectorsJi5AYi( i 51,2),
which yield the parity-check equationJi5Aji . The noise
vectorji can be thought of as having two separate segme
denoted byu ~up! and d ~down! later on. The parametera
controls the error-correction ability for the second messa
the transmitted information redundancy increases witha.
The decoding problem for each receiver is to find the m
probable noise vectors ,si andsi , such that the parity-check
equation

Ji5S A1 A2

0 A3
D S si

si
D ~ i 51,2! ~6!

is obeyed, and using prior knowledge about the two no
vectors characterized by the two different channels.

The second receiver has to estimate only the lower par
the noise vectorjd, which can be carried out using only th
lower part of Eq.~6!. However, we assume here that bo
3-3
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receivers independently solve Eq.~6! using prior knowledge
on their own channels since one can show that solving
whole equation provides optimal estimation performance
both receivers. As Eq.~6! has the same form for receivers
and 2, we hereafter omit the subscripti 51,2.

It should be emphasized here that the upper triang
architecture in the parity-check matrixA is suitable for pro-
viding a higher-error correction ability to the second mess
W2 which is more degraded according to Eq.~1! than the
other messageW1; consequentially,j d can be estimated in
dependent ofj u, while estimation ofj u fails unlessj d is
correctly retrieved.

For bitwise minimization of the error probability, the op
timal estimation is given by maximizing the posterior ma
ginal ~MPM!

ĵ i
u5argmaxsiP$0/1%P~si uJ!, ĵ j

d5argmaxs j P$0/1%P~s j uJ!.
~7!

An exact evaluation of Eq.~7! is generally hard; therefore
the belief propagation~BP! approximation scheme is widel
used as a practical decoding algorithm. The latter has b
shown to be identical to the Thouless-Anderson-Palm
~TAP! approach in the current case@14–19#.

IV. STATISTICAL MECHANICS

A. Macroscopic analysis—performance evaluation

In order to evaluate the typical error-correction ability
these codes in the limitN→`, we investigate the behavio
of the MPM decoder using the established methods of sta
tical mechanics. We first map the current system to an Is
spin model with finite connectivity by employing the bina
representation$11,21,3% for the alphabet and operator in
stead of the Boolean one$0,1,1%. This implies that the pos
terior probabilityP(s,suJ) can be expressed as a Boltzma
distribution at the inverse temperatureb51 using a Hamil-
tonian

H~s,suJ!5 lim
g→`

H g (
$I(K1),J(K2)%

DI(K1),J(K2)
1,2

3dS 2JI(K1),J(K2)
u ; )

i PI(K1)
si )

j PJ(K2)
s j D

1g (
$J(K3)%

DJ(K3)
3 dS 2JJ(K3)

d ; )
j PJ(K3)

s j D J
2F (

i 51

(12a)N

si2F(
j 51

aN

s j , ~8!

whereI(K)5^ i 1 ,i 2 , . . . ,i K& denotes the combination of th
K subscripts chosen from thei 51,2, . . . ,(12a)N possibili-
ties without duplication~the order is ignored!, and J(K)
5^ j 1 , j 2 , . . . ,j K& is the K subscripts combination fromj
51,2, . . . ,aN chosen similarly. The tensorDI(K1),J(K2)

1,2 be-

comes 1 when its subscripts agree with the positions of n
zero elements in the parity-check matricesA1 andA2, and 0
03670
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otherwise. The tensorDJ(K3)
3 similarly corresponds toA3.

The first and second terms in the Hamiltonian~8! correspond
to Eq. ~6!, while the third and fourth terms are provided b
the prior distribution of the noise. The fieldF represents the
channel noise level; it is set to12 ln(12p1)/p1 and 1

2 ln(1
2p2)/p2 for the first and the second receivers, respective

In order to simplify the calculation, we first employ th
gauge transformationsi→sij i

u ,s j→s jj j
d , J

•••

u →1, and
J
•••

d →1, which reduces complicated couplings expressed
the first and second terms in Hamiltonian~8! to simple fer-
romagnetic interactions.

As the parity-check matrices and noise vectors are ge
ated randomly, we have to perform averages over these v
ables for extracting typical properties of the code. This c
be carried out by the replica method2bF
51/N^ ln Z&A,j u,j d5 limn→0(1/nN)ln^Zn21&A,j u,j d, where
Z is the partition function and̂•••&A,j u,j d represents an av
erage over the parity-check matrixA and the noise vectorsj u

andj d ~i.e., the quenched variables!. This gives rise to three
sets of order parameters

q$a1 ,a2 , . . . ,am%5
1

N (
i 51

(12a)N

Xisi
a1 . . . si

am ,

r $a1 ,a2 , . . . ,am%5
1

N (
j 51

aN

Yjs j
a1 . . . s j

am ,

t $a1 ,a2 , . . . ,am%5
1

N (
j 51

aN

Zjs j
a1 . . . s j

am , ~9!

where a1 ,a2 , . . . ,am denote the replica indices runnin
from 1 to n, and their conjugatesq̂$a1 ,a2 , . . . ,am% ,

r̂ $a1 ,a2 , . . . ,am% , t̂ $a1 ,a2 , . . . ,am% . The variablesZj are intro-
duced to express the constraint of the parity-check matrixA3
as

dS (
$J(K3)\ j %

D ^ j ,J(K3),\ j &
3 2C3D

5 R dZj

2p
Z

j

($J(K3)\ j %D
^ j ,J(K3),\ j &
3

2(C311)

. ~10!

The variablesXi andYj are similarly introduced forA1 and
A2.

In order to proceed further, one has to make an assu
tion about the symmetry of replica indices. Here we emp
the simplest replica symmetric~RS! ansatz, expressed in th
current case byq$a1 , . . . ,am%5q0*dxp(x)xm, r $a1 , . . . ,am%

5r 0*dyr(y)ym, t $a1 , . . . ,am%5t0*dzf(z)zm, whereq0 , r 0,
and t0 are the normalization constants to makep(x), r(y),
and f(z) proper probability distributions over the interva
@21,1#, respectively. Unspecified integrals are perform
over @21,1#. We also assume a similar ansatz for the con
gate variables. A further complicated assumption about
order parameter symmetry is generally required in most
ordered systems@20,21#. However, the validity of the RS
ansatz in the current system is strongly supported by a re
report on the absence of the replica symmetry breaking~in
the dominant state! in gauged systems where Nishimori
3-4
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temperature is used@22#. The latter corresponds to using th
correct priors in decoding@23#, as performed in the curren
analysis.

Under these assumptions, one obtains the free energ

F5~12R12R2! ln 22~12a2R1!

3K lnS 11)
l 51

K1

xl )
l 851

K2

yl 8D L
pK1,rK2

2~a2R2!

3K lnS 11)
l 51

K3

zl D L
fK3

1~12a!C1^ ln~11xx̂!&p,p̂

1aC2^ ln~11yŷ!&r,r̂1aC3^ ln~11zẑ!&f,f̂1~12a!

3K lnFTrse
sjuF)

l 51

C1

~11sx̂l !G L
j,p̂C1

1aK lnFTrsesjdF)
l 51

C2

~11s ŷl !

3 )
l 851

C3

~11s ẑl 8!G L
j,r̂C2,f̂C3

, ~11!

where ^•••&PK denotes an integral of the form
*)k51

K dxkP(xk)(•••) and ^ f (j)&j5(12p) f (11)
1p f(21).

Varying Eq.~11!, one obtains a set of saddle-point equ
tions,

p~x!5K dS x2tanhF (
l 51

C121

tanh21x̂l1juFG D L
j,p̂C121

,

r~y!5K dS y2tanhF (
l 51

C221

tanh21ŷl

1 (
l 851

C3

tanh21ẑl 81jdFG D L
j,r̂C221,f̂C3

,

f~z!5K dS z2tanhF(
l 51

C2

tanh21ŷl

1 (
l 851

C321

tanh21ẑl 81jdFG D L
j,r̂C2,f̂C321

,

p̂~x!5K dS x̂2 )
l 51

K121

xl )
l 851

K2

yl 8D L
pK121,rK2

,

r̂~y!5K dS ŷ2)
l 51

K1

xl )
l 851

K221

yl 8D L
pK1,rK221

,

03670
-

f̂~z!5K dS ẑ2 )
l 51

K321

zl D L
fK321

. ~12!

The overlaps Mu51/(12a)N( i ŝij i
u and Md

5(1/aN)( j ŝ jj j
d serve as performance measures for

error-correcting ability. After solving the saddle-point equ
tions ~12!, these can be calculated as

Mu5E dhheff
u ~h!sgn~h!, Md5E dhheff

d ~h!sgn~h!,

~13!

where distributions of effective fieldsheff(h) are evaluated as

heff
u ~h!5K dS h2tanhF(

l 51

C1

tanh21x̂l1jFG D L
j,p̂C1

heff
d ~h!5K dS h2tanhF(

l 51

C2

tanh21ŷl

1 (
l 851

C3

tanh21ẑl 81jFG D L
j,r̂C2,f̂C3

. ~14!

B. Microscopic analysis—practical decoding

As already mentioned, it is computationally hard to p
form MPM decoding~7! exactly. Instead, the BP algorithm
@14# is widely used for a practical decoding in LDPC code
Belief propagation has recently been shown to be equiva
to the Bethe method@15,16#, in general, and to provide a
equivalent result of the TAP approach@17#, in particular, for
spin glass models@18,19#. Since the current system is som
what similar to spin glass models, we use a term BP-TAP
referring to this scheme from now on.

The BP-TAP approach offers an iterative algorithm to a
proximately evaluate marginal posterior distributions bas
on local dependencies between syndrome and variab
These local dependencies can be uniquely identified w
conditional probabilities. In the current system, these beco
qm l

n 5P(nl5nu$J/Jm%) andq̂m l
n }P(Jmunl5n,$J/Jm%), where

nl andJm represent components of spin variabless, s, and
syndromeJ, respectively;$J/Jm% denotes the set of syn
drome bits excludingmth component. As most syndrome an
spin variables are not directly related, we assign the con
tional probabilities only to pairsm l that have nonzero ele
ments in the parity-check matrixA.

Evaluating the two types of conditional probabilities u
ing directly connected components, the BP-TAP algorith
can be generally expressed as

qm l
n 5am le

Fn )
nPM( l )\m

q̂n l
n , ~15!

q̂m l
n 5âm l (

$nj PL(m)\ l %
dS Jm ;n )

j PL(m)\ j
nj D )

j PL(m)\ l
qm j

nj ,

~16!
3-5
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whereM( l ) andL(m) denote the sets of syndrome and sp
variable indices that are directly linked to spin and syndro
indicesl andm, respectively;M( l )\m represents the set o
indicesnPM( l ) excludingm and similarly forL(m)\ l and
other sets. Normalization constants,am l and âm l , are intro-
duced to makeqm l

n and q̂m l
n probability distributions of the

spin variablen. A field F is introduced to represent the prio
probability.

Since spin variablen takes only two values61, it is
convenient to express the BP-TAP algorithm using spin
erages(n561nqm l

n and (n561nq̂m l
n rather than the distribu

tionsqm l
n andq̂m l

n themselves. As the parity-check matrixA is
structured, it may be useful to assign a different notation
the spin averages according to the submatrix, to which
pair of indicesm l belongs to. We usexm l ,ym l , and zm to
denote(n561nqm l

n when the pair of indicesm l belongs to

A1 , A2, andA3, respectively. Similar notationsx̂m l ,ŷm l , and
ẑm l are used for(n561nq̂m l

n . Then, the BP-TAP algorithms
~15! and ~16!, which are expressed as a set of function
equations, are reduced to a couple of nonlinear equation

xm l5tanhF (
nPA1

col( l )/m

tanh21x̂n l1FG ,

ym l5tanhF (
nPA2

col( l )/m

tanh21ŷn l1 (
nPA3

col( l )

tanh21ẑn l1FG ,

zm l5tanhF (
nPA2

col( l )

tanh21ŷn l1 (
nPA3

col( l )/m

tanh21ẑn l1FG ,

x̂m l5sgn~Jm! )
i PA1

row(m)/ l

xm i )
j PA2

row(m)
ym j ,

ŷm l5sgn~Jm! )
i PA1

row(m)

xm i )
j PA2

row(m)/ l

ym j ,

ẑm l5sgn~Jm! )
j PA3

row(m)/ l

zm j , ~17!

whereArow(m) andAcol( l ) denote sets of nonzero elemen
in the mth row andi th column of matrixA, respectively.

Equations~17! can be solved iteratively from appropria
initial conditions ~prior means are usually chosen as init
states!. Less than 50 iterations are typically sufficient f
convergence. After obtaining the solutions, approxima
posterior means can be calculated

^si&5tanhF (
nPA1

col( i )

tanh21x̂n i1FG ,

^s j&5tanhF (
nPA2

col( j )

tanh21ŷn j1 (
nPA3

col( j )

tanh21ẑn j1FG ,

~18!
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which provides the MPM estimatorsŝi5sgn(̂ si&) and ŝ j
5sgn(̂ s j&).

It can be shown that the BP-TAP framework provides
exact result when the global structure of the connectivitie
graphically expressed by a tree@14#. Unfortunately, it is still
unclear how good are the approximations obtained whe
given system does not admit a tree architecture.

The graphical architecture of LDPC codes generally h
many loops, which implies that the BP-TAP framework do
not necessarily offer a good approximation. However, it
conjectured, and partially confirmed, that a nearly exact
sult can be obtained, as long as no other locally stable s
tion exists, when the parity-check matrixA is randomly con-
structed and in the limitN→`; this is due to the fact that the
typical loop length scales asO(ln N) for randomly con-
structed matrices, which implies that LDPC codes can
locally treated as trees ignoring the effect of loops@24#.

Neglecting the effect of loops naturally leads to a mac
scopic description of the BP-TAP algorithm~17! utilizing
density functions of messagesxm l , ym l , zm l , x̂m l , ŷm l , and
ẑm l , which becomes identical to the simple iteration of t
saddle-point equation~12! @24#. Surprisingly, the celebrated
method known as thedensity evolution~DE! @13#, recently
discovered independently in the information theory comm
nity, reduces exactly to the same equation~12!. As both the
DE and the current analysis reduce to an identical equa
~12!, the estimates provided by the two frameworks gen
ally coincide for the practical performance. However, as
concept of free energy is missing from the DE framework
does not provide a way for evaluating the optimal~theoreti-
cal! performance, for a given code; this is naturally chara
terized, in the statistical physics framework by thermod
namical transitions between decoding success and fa
phases.

V. RESULTS

In order to theoretically examine the typical performan
that can be obtained by the linearly combined cod
scheme, we solved the saddle-point equations~12!. Since
solving the equations analytically is generally difficult, w
mainly resorted to numerical methods. The solutions w
obtained by iterating the saddle-point equations~12!, and
approximating the distributions byO(104) sample vectors.
Less than 50 iterations were typically sufficient for obtaini
a solution.

Solving the equations for several parameter sets, ass
ing a.R2 /(R11R2), we found that the solutions can b
classified into three categories depending on whether o
lapsMu andMd are 1 or not. The first one is referred to th
ferromagnetic~FM! solution (Mu5Md51) corresponding to
a perfect retrieval for both messagesW1 andW2. Thehalf-
ferromagnetic ~HFM! solution which is characterized b
MuÞ1 andMd51 implies that only the second messageW2
is perfectly retrieved, whileW1 is not. The last category
termed paramagnetic~PM! solution, describes a decodin
failure for both messages being characterized byMuÞ1,Md
Þ1. The ferromagnetic solution always exists and is loca
stable forC1>3 andC3>3, while one can find other solu
3-6
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tions only for relatively higher noise levels. As the noi
level increases, HFM and PM solutions emerge in this or

The HFM solution may look counterintuitive at first be
cause the corruption process for the second receiver is
pressed as Eq.~1!, which gives the impression that the cod
word was relayed to the second receiver via the first o
Retrieval of W2 would therefore fail unlessW1 has been
correctly decoded. However, one should keep in mind t
the two receivers carry out two different tasks; the first
ceiver has to retrieve more information from the slightly co
rupted code word, while the second receiver retrieves
information from a more degraded message. A failure of
first receiver in decodingboth components of the messag
ju andjd, does not provide any information on its ability~or
the ability of receiver 2! to successfully decode part of th
messagejd. In addition, the current code based on an up
triangular parity-check matrix is designed to provide
higher-error-correction ability forW2 as it has to be trans
mitted to a farther distance and relatively more resourc
assigned forW2 in construction of a code wordX for a
.R2 /(R11R2), makes it possible to produce the nontrivi
solution HFM. Fora,R2 /(R11R2), on the other hand, we
found only two solutions: FM and PM. A pictorial explana
tion is provided in Fig. 2. The solution that has the lowe
free energy among the three becomes thermodynamic
dominant. As the noise levelp becomes higher~or the fieldF
becomes weaker!, the dominant state changes from FM
HFM and PM in this order. Since receivers are required
retrieve only their own messages, the transition point
tween HFM and PM corresponds to the maximum no
level for error-free communication in the second chann
while maximum noise level for the first channel is given
the transition point between FM and HFM.

However, this does not imply a successful decoding up
the critical points inpractical time scales. Practical perfec
decoding by the BP-TAP algorithm is possible only when
suboptimal solutions exist, which means that the practic
achievable limit is given by thespinodal pointsof the HFM
and PM solutions for the first and the second channels,
spectively; i.e., the point where new suboptimal solutio
emerge. A similar phenomenon has been reported before
similar systems@10,11#.

FIG. 2. Areas corresponding to FM, HFM, and PM for a wir
less degraded channel assuming that the noise corruption rate g
proportionally to the distance from a broadcast station~sender!. For
a.R2 /(R11R2) ~left! , the area whereW2 can be perfectly re-
trieved becomes broader than fora,R2 /(R11R2) ~right! because
of the existence of the HFM solution.
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Figure 3 shows the maximum noise levels for perfect
coding of the linearly combined coding method obtained
C254 and 0 fixingC15C353; C250 corresponds to the
time sharing scheme, for whichA250. One can find that
both optimal and practical performances of the MPM d
coder are improved by the introduction of the additional su
matrix A2, as anticipated, in spite of the fact that the para
eterC2(54) is not optimally tuned. This result may induc
the hope that Cover’s limit can be saturated by optima
tuning the submatrices. However, our analysis contrad
this conjecture. Solving Eq.~12! in the limit C3→` andC1
or C2→` is feasible; it is known that the MPM decode
provides the optimal performance in this limit, while prac
cal BP-TAP decoding becomes difficult. The three solutio
correspond to those already mentioned before, but can
analytically expressed as the following.

~1! FM solution: Both messages are decodable (Mu
5Md51). The corresponding solutions and free energy

p~x!5d~x21!, p̂~ x̂!5d~ x̂21!,

r~y!5d~y21!, r̂~ ŷ!5d~ ŷ21!,
~19!f~z!5d~z21!, f̂~ ẑ!5d~ ẑ21!,

F52~122p!F.

ws

FIG. 3. Optimal and practical performance of the MPM decod
calculated by methods of statistical mechanics for differenta val-
ues. For the first channel, the optimal performance is given by
thermodynamical transition between FM and HFM solutions, wh
the transition between HFM and PM solutions marks the optim
performance for the second channel. On the other hand, the pr
cal performance is given by the spinodal points of the HFM and
solutions for the first and the second channels, respectively. M
Carlo solutions based on 104 sample vectors were employed fo
solving the saddle-point equation~12!. The standard deviation val
ues resulting from ten trials are smaller than the symbol size.
black squares and the black circles denote the optimal and the p
tical performances for the linearly combined coding scheme, wh
code parameters are set toC15C353,C254, R15R251/4. Dia-
mond symbols denote the maximum noise levels for decoding
cess by the BP-TAP algorithm, determined from 50 experime
The error bars are smaller than the symbol size. Broken lines de
the optimal and practical performances of the time sharing for c
responding LDPC codes. The two lines in the upper right are C
er’s and time sharing capacities calculated in the information the
literature.
3-7
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~2! HFM solution: MessageW2 is only decodable (Mu
Þ1,Md51).

p~x!5^d~x2tanhjF !&j , p̂~ x̂!5d~ x̂!,

r~y!5d~y21!, r̂~ ŷ!5d~ ŷ!,
~20!

f~z!5d~z21!, f̂~ ẑ!5d~ ẑ21!,

F5~12a2R1!ln 22~122p!F2~12a!ln 2H2~p!.

~3! PM solution: Both messages are not decodable (Mu
Þ1,MdÞ1).

p~x!5^d~x2tanhjF !&j , p̂~ x̂!5d~ x̂!,

r~y!5^d~y2tanhjF !&j , r̂~ ŷ!5d~ ŷ!,
~21!

f~z!5^d~z2tanhjF !&j , f̂~ ẑ!5d~ ẑ!,

F5~12R12R2!ln 22~122p!F2 ln 2H2~p!.

Examining the critical condition for decoding success
each channel, and comparing the free energy of the soluti
one obtains the capacity region of the linearly combined c
ing scheme

R2,a@12H~p2!#,

R1,~12a!@12H~p1!#. ~22!

This is, unfortunately, identical to the time sharing cap
ity that can be achieved by a simple concatenation of
independent codes. This result implies that the advantag
the linearly combined coding scheme vanishes as the sub
trices become dense and this method cannot saturate Co
limit.

VI. SUMMARY AND CONCLUSION

In this paper, we have examined the performance of
early combined LDPC codes for information transmission
a broadcast channel. Our analysis shows that the capaci
the suggested coding scheme is upper bound by the
sharing capacity, in spite of the apparent improvemen
both optimal and practical performance with respect
LDPC based time sharing codes characterized by finite c
nectivity values.

The reason for the failure of linearly combined LDP
codes to saturate Cover’s limit may be explained by the c
word structure produced by this scheme. In his proof, Co
optimized the code performance by introducing a spec
structure termed thecloud coding, employing an auxiliary
random variableU as in Eq.~2!. In cloud coding, a code
wordX is randomly generated according toP(XuU) around a
cloud centerU sampled fromP(U). Knowing this structure,
one can use the cloud centerU and the cosetXc5X2U for
encodingW2 andW1, respectively.
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In the case of binary symmetric channels, the optim
cloud centerU can be obtained by samplingN bit unbiased
vectors, for which the entropy per bit can be maximized to
On the other hand, one can produce the optimal cosetXc by
independently and randomly generating each bit using a
form bias 0,d,1, which provides an entropyH2(d) per
bit.

In an ideal situation, a noise vectorj1 that is biased with
a flip probability p1 is added to the cosetXc in the first
channel. This implies that the entropy of the received co
becomesH2(d* p1) per bit, while the entropy of the nois
vector isH2(p1) per bit. Since one can use the differen
between the entropies to convey the information ofW1, the
capacity of the first channel becomesR1,H2(d* p1)
2H2(p1), which is the second inequality of Eq.~2!. On the
other hand, for the second channel, characterized by a
ratep2, the cosetXc together with a channel noisej2 serves
as a single noise vector, for which the entropy becom
H2(d* p2) per bit. As the entropy of the received cloud ce
ter can be maximized to 1 per bit, this means that the cap
ity of the second channel is given byR2,12H2(d* p2),
which is the first inequality of Eq.~2!.

In linearly combined coding scheme (
G

3
T

G2
T

)W21(
0
G1

T

)W1 ,

(
G

2
T

G3
T

)W2 becomes almost random, which may serve as

optimal cloud center. However, the second part (
0
G1

T

)W1,
which corresponds to the coset, is somewhat structured,
fering from the optimal choice of uniformly biased rando
vectors.

In order to compare the structured coset with the optim

one, let us fix the maximum entropy per bit of (
0
G1

T

)W1,
which equals 12a, to that of the optimal cosetH2(d).
Then, one can show that the entropy of the corrupted co
with flip probability p per bit always increases from
H2(d* p) to (12a)1aH2(p)5H2(d)1H2(p)
>H2(d* p). This means that the critical rate of the fir
channel increases fromH2(d* p1)2H2(p1) to (12a)@1
2H2(p1)#, while that of the second channel reduces fro
12H2(p2) to a@12H2(p2)#. This trade-off between the ca
pacities of the two channels limits the performance of l
early combined coding scheme to the time sharing limit t
is always within Cover’s capacity region.

In conclusion, while the suggested linearly combin
LDPC coding scheme provides an improved performa
over LDPC based time sharing codes for finite connectiv
constructions, in both theoretical and practical limits, it ca
not go beyond the theoretical time sharing limit; for that
happen, different coding schemes should be examined.
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